
 1

A Distributed Hierarchical Framework for Autonomous

Spacecraft Control
Julia M. Badger, Philip Strawser

NASA Johnson Space Center
2101 NASA Parkway
Houston, TX 77058

281-483-2277
{julia.m.badger,

philip.a.strawser}@nasa.gov

Charles Claunch
GeoControl Systems

2900 Woodridge Dr. Suite 100
Houston, TX 77087

 281-483-1580
 charles.a.claunch@nasa.gov

Abstract— Future human space missions for exploring beyond

low Earth orbit are in the conceptual design stage. One such

mission describes a habitat in cis-lunar orbit that is visited by

crew periodically, others describe missions to Mars. These

missions have one important thing in common: the need for

autonomy on the spacecraft. This need stems from the latency

and bandwidth constraints on communications between the

vehicle and ground control. A variable amount of autonomy

may be necessary whether the spacecraft has crew on board or

not.

Spacecraft are complex systems that are engineered as a

collection of subsystems. These subsystems work together to

control the overall state of the spacecraft. As such, solutions

that increase the autonomy of the spacecraft (called autonomous

functions) should respect both the independence and

interconnectedness of the spacecraft subsystems. This

distributed and hierarchical approach to system monitoring and

control is a key idea in the Modular Autonomous Systems

Technology (MAST) framework.

The MAST framework enables a component-based architecture

that provides interfaces and structure to developing

autonomous technologies. The framework enforces a

distributed, hierarchical architecture for autonomous control

systems across subsystems, systems, elements, and vehicles. An

example autonomous system was implemented in this

framework and tested using realistic spacecraft software and

hardware simulations. This paper will discuss the framework,

tests conducted, results, and future work.

TABLE OF CONTENTS

1. INTRODUCTION ... 1
2. BACKGROUND INFORMATION 2
3. THE MAST FRAMEWORK...................................... 3
4. EXPERIMENTS ... 5
5. CONCLUSIONS AND FUTURE WORK 5
ACKNOWLEDGEMENTS .. 6
REFERENCES... 6
BIOGRAPHY .. 7

1. INTRODUCTION

Future exploration missions that will send humans beyond

near Earth orbit are in the planning stages at NASA. A

common concept of operations for these missions is to

emplace habitats, spacecraft, and logistics in advance of the

arrival of the crew. This important equipment will remain in

place between crewed missions, but during this time, it is

essential that the health of these assets is maintained. Ground

operations support will clearly play a role in this, but with

reduced communication bandwidth and increased latency,

operations must advance beyond the paradigm of the

International Space Station (ISS). As such, research into

what technologies are needed to enable the autonomous

operation of not always crewed human spacecraft is

underway.

A key concept in this work is vehicle systems management.

This paradigm assumes that cross-system or vehicle level

decisions will need to be made while out of communication

contact with ground control. There are two important

methods of vehicle systems management. The first is

necessary when crew is on board and operating the vehicle,

but requires support that the ground controllers cannot give.

The second involves vehicle control when no one is on board.

These uncrewed scenarios occur frequently in advanced

mission concepts. The Gateway [1], a cis-lunar habitat that

will serve as the access point to lunar and Martian

destinations, is expected to be uninhabited for 11 months per

year, and for up to 3 years at a time.

Although Gateway is not the bounding case in terms of

technical difficulty, since communication into cis-lunar space

is expected to be frequent and to have low latency, it does

have its challenges. The Gateway vehicle will be comprised

of several modules that will be built by various space

agencies around the globe. Like the International Space

Station, these modules will require tight integration for

vehicle control. For example, the life support systems will be

present on some, but not all, habitable modules, and the life

support systems that exist will have to function appropriately

as redundant capabilities for the vehicle stack. This

collection of subsystems and modules are both

interconnected and independent, which is a recipe for

operational complexity. Unfortunately, the management of

operational complexity is largely out of reach for most

autonomous systems technologies today.

This paper will detail the efforts to develop a framework that

would be capable of the successful operation of a complex

human spacecraft, while respecting the independence and

interconnectedness of its components and subsystems. The

Modular Autonomous Systems Technology (MAST)

https://ntrs.nasa.gov/search.jsp?R=20190002469 2020-05-09T21:58:41+00:00Z

 2

framework enables a component-based architecture that

provides interfaces and structure to developing autonomous

technologies. The framework enforces a distributed,

hierarchical architecture for autonomous control systems

across subsystems, systems, elements, and vehicles. The

framework supports communication and transparent

interfaces between its components and enforces a strict

command and telemetry flow as a systems engineering tool.

The most unique part of this framework is the inclusion of

contract based design concepts that encourages design for

verification methodologies and supports component-level

verification playing an important role in overall system

verification.

This paper is organized as follows. Section 2 will give some

background on previous work on vehicle system

management and associated frameworks. Section 3 will

describe the MAST framework itself. Section 4 provide

details on testing that MAST has undergone and results of

these tests. Section 5 will conclude the paper with a focus on

the vision of future work along this promising path.

2. BACKGROUND INFORMATION

Two important studies were conducted into the autonomous

operation of periodically crewed human spacecraft [2, 3].

The first study defined dormancy as uncrewed flight that

featured a reduced set of operations and described the mission

stages of uncrewed operations, phases of dormant operations,

and critical system capabilities that are needed for dormant

operations. This study provided a brief comparison of

dormancy operations of past robotic missions to identify

lessons that can be applied to planned human exploration

missions. The subsequent study in [3] provided a deep-dive

analysis into dormant operations on a subsystem basis. The

analysis compared the state of the art in human spacecraft

operation (ISS) with the requirements that will drive the

operation of an uncrewed human spacecraft in Martian orbit.

The resulting technology gaps were assessed and

recommendations for future development were described.

One of the main recommendations for the control of

uncrewed and dormant spacecraft was the inclusion of a

vehicle systems manager (VSM) to provide integrated,

vehicle-level command and control of the spacecraft.

Previous work is mostly found in technologies that contribute

to a VSM-like function. While the ISS was not designed for

dormant operations, numerous innovations in autonomous

payload and core systems control and monitoring have been

made. A summary of these advances [4] includes data

downlink of accelerometer data, onboard thermal

management, onboard data bandwidth management,

scientific payload cold storage monitoring and operations,

and power systems monitoring and emergency response.

Though these technologies have made promising progress

towards realizing autonomous systems management, these

capabilities were developed for an active crewed spacecraft

managed from Earth. As such, they do not represent an

integrated vehicle systems management solution.

Advanced research has developed a complete fault

management capability referred to as Advanced Caution and

Warning System (ACAWS) [5]. ACAWS splits the fault

management task into fault detection, fault isolation, and

fault impacts reasoning, but uses a single spacecraft

component and fault model. First tested on a low-fidelity

surface habitat, ACAWS is being adapted to perform fault

management for the Orion spacecraft, both for flight

controllers and also for crew [6]. The Autonomous Power

Controller subsystem level controller and fault management

functions are integrated with a VSM including a spacecraft-

wide automated planner, subsystem level fault management,

and plan execution system, running on modern avionics and

path-to-flight hardware [7]. While this work demonstrates

the successful application of a hierarchical autonomous

system architecture, the scope of the experiment was limited

and did not demonstrate subsystem integration or

interconnectedness. Likewise, plan execution technology has

been tested onboard the ISS as a way to automate payload

operations. AMO EXPRESS [8] describes a demonstration of

how an experiment facility can be autonomously operated,

with simple integrated fault detection and response

capabilities. The NASA Platform for Autonomous Systems

(NPAS), is a software platform used to make systems operate

autonomously using a model-based systems engineering

(MBSE) approach [9]. NPAS is able to use live models for

real-time autonomous operations, largely for integrated

system health management.

Plant operations, such as water processing [10], have

benefited from similar systems management technologies.

These examples integrate many processes and subsystems

into decision support and autonomous operations tools.

However, these systems (though larger) are typically less

complex and less interconnected than a human spacecraft’s

subsystems. Likewise, a sort of vehicle systems management

occurs on robotic spacecraft en route to deep space

destinations, but as noted in [1], these systems typically

employ their long time to effect to bring the spacecraft to a

safe state for ground controllers to assess and recover.

Human spacecraft will not have the same recovery options in

many circumstances.

Autonomous systems are complex, difficult to test, and

nearly impossible to conduct formal analysis on to find

performance guarantees. However, the use of autonomous

systems technology for human spacecraft will require

convincing verification and validation. The MAST

framework has a path to formal analysis and will create

assume-guarantee contracts as long as the autonomous

technology components can be verified individually. This

paper will describe the successful integration of several

subsystems, modules, and processes with a vehicle system

manager in the MAST framework and discuss the contract-

based design approach that was taken.

 3

3. THE MAST FRAMEWORK

The MAST framework is a component-based system that

provides interfaces and structure to developing autonomous

technologies. The categories of technologies are broken into

several “buckets” (see Figure 1) that are based on the OODA

loop1 (Observe, Orient, Decide, Act) concept. These buckets

are each identified with an autonomous functionality that is

needed in the control of an autonomous system. There are

three types of autonomous systems that will be defined:

1. Spacecraft subsystem - operates independently

both nominally and in response to fault

detection, isolation and recovery; examples are

Power, Communications, Life Support.

2. Mechanical events & processes – examples

include docking of spacecraft (i.e., Automated

Rendezvous and Docking), grappling with

robotic manipulators.

3. System-level Intelligence – onboard ability for

system-level planning, health monitoring, and

mission management; example is the Vehicle

System Manager (VSM).

Figure 1: Open-loop Framework Diagram

These various types of autonomous systems that will be

implemented with buckets of autonomous functionality are

henceforth referred to as “clusters.” Each cluster will have 0

to n buckets of each type, depending on the needs of the

system that the cluster is servicing. The various buckets will

have different requirements and structure, but this section

will first expound upon three main reasons for creating this

architecture:

1. Using products from autonomy across levels of

abstraction,

2. Creating systems that are straight-forward to

verify, or are constructed with guarantees, and

3. Allowing for variable autonomy.

 Figure 2 gives an illustration of an example spacecraft

architecture that has several autonomous modules, where

each autonomous module is associated with a cluster, which

contains an instance of the component-based architecture

1 https://en.wikipedia.org/wiki/OODA_loop

shown in the Figure 1 above. This example architecture is

loosely based on the Gateway concept of Autonomous

Systems Management (ASM) architecture.

Figure 2: Example Autonomous Spacecraft Diagram

Distributed and Hierarchical Architecture

A key component of this framework is its ability to support a

distributed and hierarchical architecture. This architecture is

a common systems engineering construct used to reduce

overall complexity by allowing components of the system to

handle what they can and delegate up issues that are outside

of their purview. The MAST framework supports this

architecture by providing templates for command and

telemetry flow through this architecture. For example, the

State Description bucket provides for a unified message to

send telemetry and requests up the hierarchy; at the VSM

level, this State Description message would provide

information flow to the human operators (on board or in

ground control). The Achievement block would send

commands down to clusters on a lower level of the hierarchy.

Likewise, the Sensors/Observers block would accept data

from hardware or from the State Description message from

lower level clusters and the Command Intent Interpretation

bucket would accept command messages from either ground

control (VSM) or clusters above it.

An example of this data flow is as follows. Consider a trip

on a circuit in the Power Distribution (PD) subsystem that

removes power from the Life Support (LS) system’s

Spacecraft Atmosphere Monitor (SAM) and some payloads.

The PD autonomous cluster would sense this fault and send

information up to the Habitat Element System Manager

(HESM). The LS cluster would likewise sense that the SAM

had been disrupted, but would know that the cause could be

internal (fault in the SAM) or external (power loss) to the LS

cluster. Therefore, it would send information up to the

HESM as well. The HESM cluster, with this data, would be

able to instruct the LS cluster to standby with respect to this

error while the PD subsystem generated and executed

recovery options.

This example is simple, but it makes important points while

allowing for several quick extensions. For example, assume

that the trip was due to overcurrent caused by an error in one

of the payloads on the circuit. This would drive the inclusion

of a Payload Systems Manager (PSM) that accumulates the

 4

states of the payloads. It would also mean that initial

recovery options by the PD cluster would be unsuccessful.

At this point, the HESM would have to get involved with

recovery, for example, and choose to turn off the payload

(either due to priority or due to data from the PSM) before

commanding the PD to again reset the circuit. One could also

imagine that the power problem somehow originated from

power creation, which for Gateway, resides on a different

module. In this case, the diagnosis and recovery process

would flow up to the VSM cluster as well.

One of the pre-requisites for a distributed and hierarchical

fault response as outlined above is the ability to have models

that support consistent levels of abstraction. Another pre-

requisite is well-defined interfaces between systems on the

same level and between clusters on the lower level. What this

means is that each cluster needs to know when it depends on

a different cluster. Going back to the example, the LS cluster

knows that it cannot diagnose the SAM failure due to the

dependency of the fault tree on data from the PD system.

Instead of having each cluster handle the acquisition of this

data from the appropriate cluster, the framework stipulates

that data connections can only be made by the cluster one

level up in the hierarchy. In that sense, the LS model knows

about the dependency, but the HESM model knows what the

dependency is. This means that the level of abstraction of

each cluster’s model fits to its purpose and level on the

hierarchy.

Further requirements on data sharing and model consistency

include the following:

• The framework shall enforce consistency of

model definition.

• The variables in the models shall self-enforce

units and assumptions (units and assumptions

should be explicit in variable definition).

• MAST shall ensure visibility and query-ability

of variables and products within hierarchical

constraints as a rule (truly internal variables

should be discouraged).

Design for Verification

Autonomous systems are complex, difficult to test, and

nearly impossible to conduct formal analysis with guarantees.

However, the use of autonomous systems technology for

human spacecraft will require convincing validation and

verification; for systems with emergent behaviors, this

requirement becomes even further out of reach of the state-

of-the-art. The MAST framework has been built with a path

to formal analysis, and allows the designer the potential of

creating guarantees as long as the autonomous technology

buckets can be verified individually. Specific requirements

include the following:

• The framework shall have the ability to

interface with temporal logic specifications.

2 http://yaml.org/

• The framework components shall require

specific definitions for the incoming and

outgoing data.

Thresholds could be defined as part of the dataports, for

example, power data input can only be from 0-100. Errors

would be thrown if data were out of range.

Specifically, the MAST framework supports a contract-based

design approach [11]. The contract-based design can be

implemented on several levels, but the framework right now

enforces contracts within the cluster, between the buckets.

This is instantiated in the following way. First, each bucket

supports having a set of assumptions on the data that comes

into the bucket. The assumptions that can be expressed as

simple logical expressions can be checked in real-time as data

enters the bucket. Likewise, buckets support guarantees on

data exiting the bucket. The guarantees that can be expressed

as simple logical expressions can be checked in real-time just

before data exits the bucket. These assume-guarantee

contracts between the buckets can be verified using various

formal methods techniques. This approach provides a benefit

in that the buckets themselves then only have to be verified

as satisfying the guarantees, given the assumptions.

The checks on the assumptions and guarantees on each

bucket can be entered into a YAML2 file for that bucket. The

MAST framework supports reading in this configuration file

at runtime and will automatically run the checks at the

appropriate times. These checks can be tied, via the

configuration file, to separate callbacks for successful or

failing checks. These callbacks can be used to disrupt the

flow of execution of the bucket, if necessary. For example,

if an incoming (assumption) check fails, the bucket could not

possibly run as intended. As such, the execution could

simply fail with a message, giving operators an indication of

where the failure originates. Alternatively, the callback could

check a broader set of assumptions, and execution of the

bucket could continue using an alternate control sequence

that satisfies only a subset of the guarantees. This behavior

is important if guarantees include both safety and

performance specifications. Upon failures, safety

specifications could be maintained while performance

guarantees are sacrificed.

A similar interaction with the outgoing checks can occur, but

the difference here is that the option to return execution to the

bucket is given. This gives the bucket the chance to self-

correct upon guarantee failure, for similar reasons as given

above.

Variable Autonomy

Because the ASM architecture is meant to be used with

human spacecraft that will see both crewed and uncrewed

stages, there is a range of autonomy that will be required for

operation. For example, the communications system may

need to be fully autonomous during dormancy, but can be

crew-controlled during critical stages in Mars orbit insertion.

 5

A key assumption for this feature is that the "reasoning" part

of the autonomous system will not need to be variable- there

should always be data analysis, planning, and state

description. However, the important parts of the system to

have an "autonomy dial" are the command and action-based

components. So, requirements for this feature are given more

on a component-by-component basis.

Additional Features

The MAST framework has been designed for distributed

execution to support the ASM architecture. This is

implemented through its integration with Core Flight

Software (cFS)3. MAST allows the application to be split

along cluster lines. All of the buckets in the cluster (running

the autonomous control loop) must run in the same process.

The inter-cluster communication uses a “blackboard” that

allows quick data transfer between the buckets in the cluster.

It also facilitates the minimization of check occurrences when

possible.

The MAST framework facilitates data logging via its

integration with the Lightweight Accumulator

Gathering Efficiently in Real-time (LAGER) logging

software. LAGER supports zero-copy transport and minimal

code interfaces. It features efficient file writing/sizing and is

built for various data sources (taps), accumulators (kegs), and

consumers (mugs). Figure 3 shows a representation of the

LAGER software.

Figure 3: LAGER

Trend analysis is an important function that many types of

autonomous systems require. The integration with LAGER

supports the on-line creation of trending baselines and trend

determination. Likewise, mode and resource management

are important functions for autonomous systems, and

libraries incorporating these capabilities have been integrated

into MAST as well.

4. EXPERIMENTS

Two experimental scenarios were implemented and run

within the MAST framework. The first follows from the

power fault scenario previously described. In addition to the

interactions between the power distribution and life support

systems, the scenario also included an Automated

Rendezvous and Docking (ARD) process with Orion. This

autonomous process featured a flight rule that the rendezvous

would be paused at certain hold points if the atmosphere

3 https://cfs.gsfc.nasa.gov/

inside the habitat was unacceptable. As such, the VSM

component was able to pause the ARD process and direct the

recovery of the overcurrent PD fault by turning off a payload.

Once the SAM recovered, the ARD process was commanded

to continue.

The second experiment involved failures that were more

continuous in nature. The scenario involved a slow coolant

loop leak into the cabin. The extra water increased the

humidity of the atmosphere, which would drive the system to

slowly increase the temperature of the cabin to accommodate

it. During an eclipse, this stress on the shell heaters could

uncover battery cell degradation. This experiment featured

two trend analyzers, for coolant level and battery power draw.

The scenario also exercised the command and control

architecture by adding element system managers to the ASM

implementation, shown in Figure 4 below.

Figure 4: ASM Architecture for Second Experiment

In both experiments, the MAST framework worked as

expected. The benefits of the contract checks were

immediately useful, as these checks were capable of finding

errors during the development and integration of the

autonomous system quickly and efficiently.

5. CONCLUSIONS AND FUTURE WORK

A framework to support the operation of a distributed,

interconnected system of systems, such as human spacecraft,

was presented. The MAST framework supports the careful

design of interconnections between distributed systems

through a hierarchical command and control architecture.

This framework promotes a design for verification paradigm

through the integration of runtime monitoring and contract-

based design. MAST has been applied to example scenarios

that incorporate several spacecraft subsystems and processes

to demonstrate feasibility and performance.

Future directions for the MAST framework are many. First,

tighter integration with spacecraft subsystems will require the

 6

full adoption of cFS. This will increase the performance and

require more stringent integration with real-time operating

systems. Second, technology integration to support the

planning and execution pipeline is needed to close the loop in

the MAST cluster. Current technologies rarely support the

type of distributed and hierarchical control needed for the

proposed Gateway control architecture, and so this is another

future direction.

Data management is hugely important in spacecraft control,

particularly because it is a resource with availability

constraints not commonly encountered on Earth. Loss of

communications, latency, and reduced bandwidth as humans

travel further from Earth are all challenges to which any

autonomous spacecraft must be robust. The MAST

framework needs to have utilities available to support these

realities. Finally, the integration of other systems and system

managers will continue to stress the framework. For

example, the addition of a robotic spacecraft inspector or

maintainer will provide the framework another resource to

schedule and more recovery options for various faults and

emergencies.

The MAST framework and associated experiments have

provided inspiration for the direction of the Gateway Vehicle

Systems Manager and autonomy architecture. MAST will

continue to play a role in the technology development and

requirements creation leading up to the next destination in

human space travel and beyond.

ACKNOWLEDGEMENTS

The authors thank Patrick Knauth, William Othon, Daniel

Carrejo, Zach Crues, Paul Bielski, Zu Qun Li, Jason Harvey,

and Miriam Sargusingh for their essential contributions to

this project.

REFERENCES

[1] Crusan, J.C., Smith, R.M., Craig, D.A., Caram, J.M., Guidi,

J., Gates, M., Krezel, J.M., and Herrmann, N. “Deep Space

Gateway Concept: Extending Human Presence into

Cislunar Space.” Proceedings of the IEEE Aerospace

Conference, 2018.

[2] Williams-Byrd, J., Antol, J., Jefferies, S., Goodliff, K.,

Williams, P., Ambrose, R., Sylvester, A., Anderson, M.,

Dinsmore, C., Hoffman, S., Lawrence, J., Seibert, M.,

Schier, J., Frank, J., Alexander, L., Ruff, G., Soeder, J.,

Guinn, J., and Stafford, M. “Design Considerations for

Spacecraft Operations During Uncrewed Dormant Phases

of Human Exploration Missions.” Proceedings of the

International Astronautical Congress, 2016.

[3] Badger, J., et al. “Spacecraft Dormancy Autonomy

Analysis for a Crewed Martian Mission.” NASA/TM-

2018-219965, 2018.

[4] Cornelius, R. and Frank, J. “International Space Station

(ISS) Payload Autonomous Operations Past, Present and

Future.” Proceedings of the AIAA Conference on Space

Operations, 2016.

[5] McCann, R., Spirkovska, L., and Smith, I. “Putting ISHM

Capabilities to Work: Development of an Advanced

Caution and Warning System for Crewed Spacecraft.”

Proceedings of the AIAA Modeling and Simulation

Technologies Conference, 2013.

[6] Aaseng, G., Barszcz, E., Valdez, H., and Moses, H.

“Scaling Up Model-Based Diagnostic and Fault Effects

Reasoning for Spacecraft.” Proceedings of the AIAA

Conference on Space Operations, 2015.

[7] Aaseng, G., Frank, J., Iatauro, M., Knight, C., Levinson, R.,

Ossenfort, J., Scott, M., Sweet, A., Csank, J., Soeder, J.,

Loveless, A., Carrejo, D., Ngo, T., and Greenwood, Z.

“Development and Testing of a Vehicle Management

System for Autonomous Spacecraft Habitat Operations.”

Proceedings of the AIAA Space Conference, 2018.

[8] Stetson, H., Frank, J., Haddock, A., Cornelius, R., Wang,

L., and Garner, L. “AMO EXPRESS: A Command and

Control Experiment for Crew Autonomy.” Proceedings of

the AIAA Conference on Space Operations, September

2015.

[9] Walker, M., Figueroa. F. and Toro-Medina, J., "PHM

enabled autonomous propellant loading operations," 2017

IEEE Aerospace Conference, Big Sky, MT, 2017, pp. 1-

11.

[10] Stein, D., Achari, G., Langford, C. H., Dore, M. H.,

Haider, H., Zhang, K. and Sadiq, R., “Performance

management of small water treatment plant operations: a

decision support system.” Water and Environment Journal,

31: 330-344. 2017.

[11] P. Nuzzo, M. Lora, Y. A. Feldman and A. L. Sangiovanni-

Vincentelli, "CHASE: Contract-based requirement

engineering for cyber-physical system design," 2018

Design, Automation & Test in Europe Conference &

Exhibition (DATE), Dresden, 2018, pp. 839-844.

 7

BIOGRAPHY

Dr. Julia Badger is the Project

Manager for the Robotics and

Intelligence for Human Spacecraft

team at NASA-Johnson Space

Center. She is responsible for the

research and development of

humanoid robotic (Robonaut) and

autonomous system capabilities,

on the Earth, the International

Space Station, and for future

exploration, that include dexterous manipulation,

autonomous spacecraft control and caretaking, and

human-robot interfaces. Julia has a BS from Purdue

University, and an MS and PhD from the California

Institute of Technology, all in Mechanical Engineering.

Her work has been honored with several awards, including

NASA Software of the Year, Early Career, and Director’s

Commendation Awards.

Philip Strawser received a B.S. in

Computer Engineering at

Georgia Tech in 2002. In 2002,

he joined NASA’s Johnson Space

Center (JSC) in Houston, Texas.

At NASA, Mr. Strawser works in

the Robotic Systems Technology

branch of the Software, Robotics,

and Simulation division. Initially

focused on avionics and

embedded systems, he helped to design and implement

several robotic platforms including Robonaut, Spidernaut,

and Centaur. He later focused on software development,

and in 2007, he led the software team to develop Robonaut

2. He led the software certification effort which allowed

R2 to go to the International Space Station in 2011. In

2012, Mr. Strawser worked with a JSC team to design and

develop the Valkyrie robot for the DARPA Robotics

Challenge. Mr. Strawser is currently the Perception and

Cognition lead for the Robonaut 2 system. His interests

are in computer vision, machine learning, and robotic task

design and execution.

Charles “Chuck” Claunch is a

software engineer with expertise

in systems integration and

software design. He has a B.S. in

Computer Science from Texas

Tech University and worked in the

telecom industry for a few years

before his over ten years at

NASA. At NASA, Chuck has

worked on several projects that

have flown to the International Space Station.

 8

